

ZAVOD ZA GRADBENIŠTVO SLOVENLIE

SLOVENIAN NATIONAL BUILDING AND CIVIL ENGINEERING

Član EOTA **EOTA-Mitglied**

Dimičeva 12, 1000 Ljubljana, Slovenija

Tel.: +386 (0)1-280 44 72, +386 (0)1-280 45 37

Fax: +386 (0)1-436 74 49 e-mail: info.ta@zag.si http://www.zag.si

ETA-17/0337 Europäische Technische Bewertung vom 03/05/2017

signated according to Article 29 of Regulation (EU) No

of EOTA (European Organisation for

. Technical

Übersetzung in die deutsche Sprache wurde von ZAG Ljubljana angefertigt

ALLGEMEINER TEIL

Organ za tehnično ocenjevanje, ki je izdal ETA

Technische Bewertungsstelle, die die ETA ausstellt

Komercialno ime gradbenega proizvoda

Handelsname des Bauprodukts

Družina proizvoda

Produktfamilie, zu der das Bauprodukt gehört

Proizvajalec

Herstellungsbetrieb

Proizvodni obrat

Herstellwerk

Ta Evropska tehnična ocena vsebuje

Diese Europäische Technische Bewertung enthält

Ta Evropska tehnična ocena je izdana na podlagi Uredbe (EU) št. 305/2011 na podlagi

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

ZAG Ljubljana

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA

- 33: Torzijsko kontrolirano zatezno kovinsko sidro iz galvansko pocinkanega jekla velikosti M6, M8, M10, M12, M16, M20 in M24 za vgradnjo v beton
- 33: Kraftkontrolliert spreizender Dübel aus galvanisch verzinktem Stahl in den Größen M6, M8, M10, M12, M16, M20 und M24 zur Verankerung im

Apolo MEA Befestigungssysteme GmbH Industriestrasse 6 86551 Aichach, Germany

Werk 18

14 strani vključno z 11 prilogami, ki so sestavni del te ocene

14 Seiten mit 11 Anlagen, die Bestandteil dieser Bewertung sind

EAD 330232-00-0601, izdaja oktober 2016

EAD 330232-00-0601 von Oktober 2016. ausgestellt

Übersetzungen dieser Europäischen Technische Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technische Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

BESONDERER TEIL

1 Technische Beschreibung des Produkts

Der Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA in den Größen M6, M8, M10, M12, M16, M20 und M24 ist ein Dübel aus galvanisch verzinktem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Illustration und Produktbeschreibung sind in Anhang A angegeben.

2 Spezifizierung und Verwendungszweck

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Bestimmungen dieser Europäischen Technischen Bewertung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Die wesentlichen Merkmale bezüglich Mechanische Festigkeit und Standsicherheilt sind im Anhang C1 bis C4 aufgelistet.

3.2 Brandschutz (BWR 2)

Die wesentlichen Merkmale bezüglich Brandschutz sind im Anfange C5 aufgelistet.

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

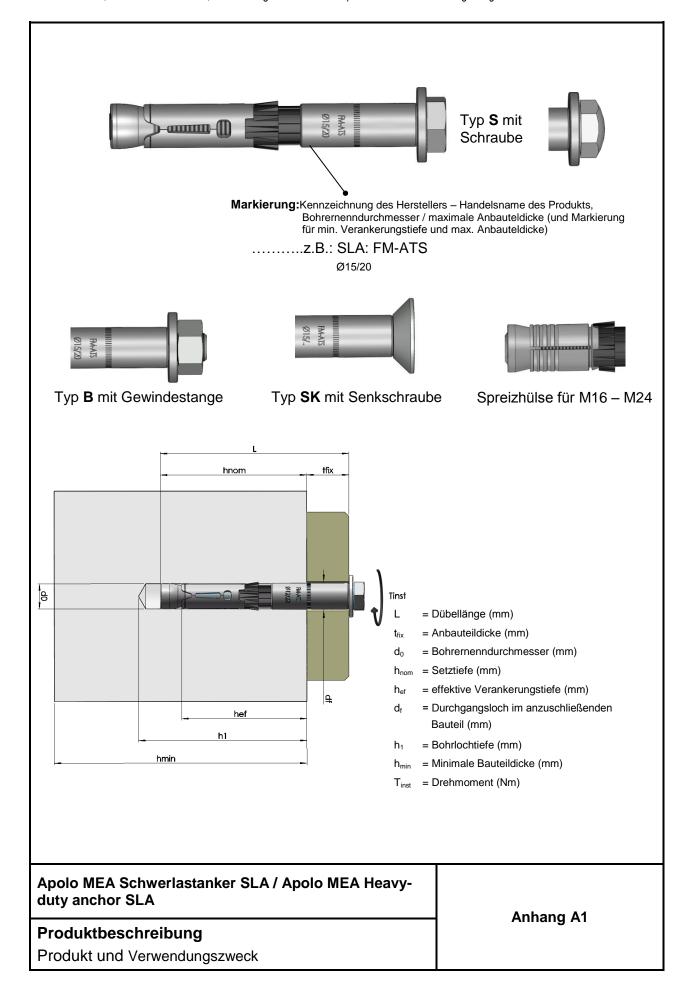
3.7 Nachhaltige Nutzung von natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

3.8 Allgemeine Aspekte

Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B1 beachtet werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß Entscheidung der Kommission¹ 96/582/EG zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) gilt das System 1.

5 Technische Einzelheiten, die zur Implementierung des AVCP-Systems notwendig sind, wie in der anwendbaren EAD vorgesehen

Technische Einzelheiten, die für die Implementierung des AVCP-Systems notwendig sind, sind Bestandteil des Kontrollplans, der beim ZAG hinterlegt ist.

Ausgestellt in Ljubljana am 03. 05. 2017

Unterzeichnet von: Franc Capuder, M.Sc. Leiter des Dienstes der TAB

Taballa	۸1.	Werkstoffe
Tabelle	AI	vverksione

-							
Dübelsteil		Werkstoff					
1 Konusbolzen gehärteter S		gehärteter Stahl nach EN 10087 (EN 10277) 1)					
2	Spreizhülse	M6 - M12 gehärteter Stahl nach EN 10132 ¹⁾ M16 - M24 Stahl nach EN 10087 (EN 10277) ¹⁾					
3	Kunststoffhülse	PA 6 nach ISO 1874/1					
4	Distanzhülse	Stahl nach EN 10025 1)					
5	Unterlegscheibe	Stahl nach EN 10139 1)					
6	Sechskantschraube	Stahlsorte 8.8 nach EN ISO 898/11) (DIN 931 -DIN 933 - typ SH= Großer Kopf) 1)					
7	Sechskantmutter	Stahlsorte 8 nach EN ISO 898/2 (DIN 934) 1)					
8	Gewindestange	Stahlsorte 8.8 nach EN ISO 898/1 1)					
9	Senkschraube	Stahlsorte 8.8 nach EN ISO 898/1 1)					
	•						

¹⁾ galvanisch verzinkt 5µm nach EN ISO 4042

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA	Anhang A3
Produktbeschreibung	
Werkstoffe	

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Statische, quasi-statische, seismische Lasten und Brandbeanspruchung.

Verankerungsgrund:

- Gerissener und ungerissener Beton.
- Bewehrter und unbewehrter Normalbeton Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013+A1:2016.

Anwendungsbedingungen (Umweltbedingungen)

Bauteile unter Bedingungen trockener Innenräume.

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen unter statischen, quasi-statischen Lasten erfolgt nach EOTA TR 055, Dezember 2016 oder CEN/TS 1992-4-4.
- Die Bemessung der Verankerungen unter seismischen Lasten erfolgt nach EOTA TR 045, Februar 2013.
- Die Bemessung der Verankerungen unter Feuerwiderstand erfolgt nach EOTA TR 020, Mai 2004.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels anzugeben (z.B. Lage des Dübels zur Bewehrung oder zu Auflagern usw.)

Einbau:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den angegebenen Werkzeugen.
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten.
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume.
- Einhaltung der effektiven Verankerungstiefe, festgelegten Rand- und Achsabstände ohne Minustoleranzen.
- Bohrlochherstellung durch Hammerbohren.
- Reinigung des Bohrlochs vom Bohrmehl.
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.
- Aufbringen des Drehmoments mit einem überprüften Drehmomentschlüssel.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA	Anhang B1
Verwendungszweck	
Spezifikationen	

Tabelle B1: Dübelkennwerte

Dübelgröße			M6	M8	M10	M12	M16	M20	M24
Bohrernenndurchr	nesser	d _{nom} [mm]	10	12	15	18	24	28	32
Setztiefe		h _{nom} ≥ [mm]	60	70	80	100	115	145	165
Dübellänge		L [mm]	t _{fix} + 60	t _{fix} + 70	t _{fix} + 80	t _{fix} + 100	t _{fix} + 115	t _{fix} + 145	t _{fix} + 165
	Typ S (SH) /B	t _{fix,min} [mm]	0	0	0	0	0	0	0
Anbauteildicke	Typ SK	t _{fix,min} [mm]	5	6	6	8	-	-	-
	Typ S (SH)/B/Sk	(t _{fix,max} [mm]	200	250	300	350	400	450	500
Nenndurchmesser d	es Kopfes der Senk Typ SK	schraube d _{sk} [mm]	17	21	26	31	-	-	-

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA	Anhang B2
Verwendungszweck	
Dübelkennwerte	

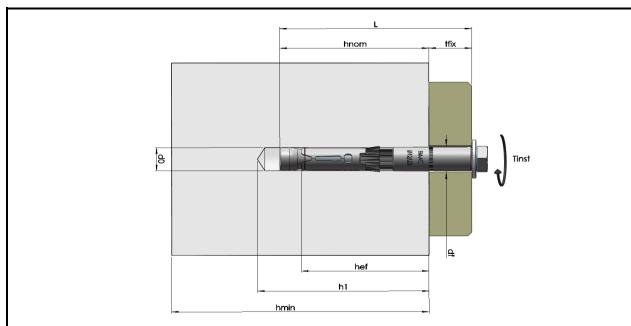


Tabelle B2: Montagedaten

Dübelgröße		M6	M8	M10	M12	M16	M20	M24
Bohrernenndurchmesser	d ₀ [mm]	10	12	15	18	24	28	32
Bohrerschneidendurchmesser	$d_{cut} \leq [mm]$	10,45	12,50	15,50	18,50	24,55	28,55	32,55
Bohrlochtiefe	$h_1 \geq \ [mm]$	75	85	95	115	130	160	180
Minimale Setztiefe	h _{nom} ≥ [mm]	60	70	80	100	115	145	165
Effektive Verankerungstiefe	h _{ef} [mm]	49	59	67	88	99	125	150
Durchgangsloch im anzuschließenden Bauteil	d _f ≤ [mm]	12	14	17	20	26	31	35
Dübellänge	L [mm]	t _{fix} + 60	t _{fix} + 70	t _{fix} + 80	t _{fix} + 100	t _{fix} + 115	t _{fix} + 145	t _{fix} + 165
Drehmoment	T _{inst} [Nm]	10	20	45	80	150	170	200

Tabelle B3: Minimale Bauteildicke, Achs- und Randabstände

Anchor size		М6	М8	M10	M12	M16	M20	M24
Minimale Bauteildicke	h _{min} [mm]	100	120	140	180	200	250	300
Minimaler Achsabstand	s _{min} [mm]	50	60	70	80	100	125	150
	für c [mm] ≥	75	90	100	150	200	250	300
Minimalan Dandahatan d	c _{min} [mm]	50	60	70	80	100	125	150
Minimaler Randabstand	für s ≥ [mm]	75	90	100	150	200	250	300

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy- duty anchor SLA	Anhang B3
Verwendungszweck	
Montagedaten	

Tabelle C1:Charakteristische Werte für Zugbeanspruchung bei statischer und quasistatischer Belastung nach EOTA TR oder CEN/TS1992-4-4

Wesentliche	Merkmale		Leistung							
			M6	M8	M10	M12	M16	M20	M24	
Montagedate		T					·			
d₀	Bohrernenndurchmesser	[mm]	10	12	15	18	24	28	32	
h _{nom}	Setztiefe	[mm]	60	70	80	100	115	145	165	
h _{ef}	Effektive Verankerungstiefe	[mm]	49	59	67	88	99	125	150	
h _{min}	Mindestbauteildicke	[mm]	100	120	140	180	200	250	300	
T _{inst}	Drehmoment beim Verankern	[Nm]	10	20	45	80	150	170	200	
Smin	Mindestachsabstand	[mm]	50	60	70	80	100	125	150	
für c ≥	Randabstand	[mm]	75	90	100	150	200	250	300	
C _{min}	Mindestrandabstand	[mm]	50	60	70	80	100	125	150	
für s ≥	Achsabstand	[mm]	75	90	100	150	200	250	300	
Stahlversage	en									
N _{Rk,s}	Charakteristische Zugtragfähigkeit -	[kN]	16	29	46	67	126	203	293	
INRK,S	Stahlversagen	[KIN]	10	29	40	01	120	203	230	
γMsN	Teilsicherheitsbeiwert	[-]				1,5				
Herausziehe	n									
N _{Rk,p}	Charakteristische Tragfähigkeit im ungerissenen Beton	[kN]	_1)	_1)	_1)	_1)	_1)	_1)	_1)	
N _{Rk,p}	Charakteristische Tragfähigkeit im gerissenen Beton	[kN]	9	12	16	25	_1)	_1)	_1)	
γ2	Taileich aub aitab airreut	[-]				1,0				
γмр	- Teilsicherheitsbeiwert	[-]				1,5				
Scr.N	Charakteristischer Achsabstand	[mm]				3 x h _{ef}				
C _{cr,N}	Charakteristischer Randabstand	[mm]				1,5 x he	f			
ψc C30/37	Erhöhungsfaktor für Herausziehen und	[-]				1,22				
ψc C40/50	Betonausbruch im gerissenen und	[-]				1,41				
ψc C50/60	ungerissenen Beton	[-]				1,55				
Betonausbru		<u> </u>	l			1,00				
k _{cr}	Faktor für gerissenen Beton CEN/TS 1992-4-4 §. 6.2.1.4	[-]				7,2				
kucr	Faktor für ungerissenen Beton CEN/TS 1992-4-4 §. 6.2.1.4	[-]				10,1				
γмс	Teilsicherheitsbeiwert	[-]				1,5				
Spalten	•									
S _{cr,sp}	Charakteristischer Achsabstand	[mm]				3 x h _{ef}				
C _{cr,sp}	Charakteristischer Randabstand	[mm]				1,5 x he	f			
γMsp	Teilsicherheitsbeiwert	[-]	1,5							
	ng unter Zugbeanspruchung	, , ,				,-				
	Beton C20/25									
N	Zuglast	[kN]	7,7	10,9	13,2	19,8	23,6	33,6	44,	
δηο	Kurzzeitverschiebung	[mm]	0,47	0,81	0,30	0,25	0,20	2,08	2,4	
δn _∞	Langzeitverschiebung	[mm]	2,38	2,49	1,99	1,12	2,15	2,08	2,4	
Gerissener B	<u> </u>	1 []	_,-,	_, .•	.,	.,	_, . •	_,-,		
N	Zuglast	[kN]	4,3	5,7	7,6	11,9	16,9	23,9	31,	
δηο	Kurzzeitverschiebung	[mm]	1,21	0,83	1,25	0,98	0,96	0,99	1,4	
	-									
δ _{N∞}	Langzeitverschiebung	[mm]	2,38	2,49	1,99	1,12	2,15	0,99	1,4	

¹⁾ Herausziehen ist nicht maßgebend

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavyduty anchor SLA $\,$

Bemessung nach EOTA TR 055 oder CEN/TS 1992-4-4

Charakteristische Werte für Zugbeanspruchung – BWR 1

Annex C1

Tabelle C2: Charakteristische Werte für Querbeanspruchung bei statischer und quasi-statischer Belastung nach EOTA TR 055 oder CEN/TS 1992-4-4

Wesentliche Merkmale			Leistung							
wesentiici	wesentiiche werkmaie			M8	M10	M12	M16	M20	M24	
Stahlversagen										
V _{Rk,s}	Charakteristische Quertragfähigkeit - Stahlversagen	[kN]	14	26	42	50	97	125	151	
M ⁰ Rk,s	Charakteristisches Biegemoment	[Nm]	12	30	60	105	266	542	932	
γMsV	Teilsicherheitsbeiwert	[-]	1,25							
Betonausb	bruch auf der lastabgewandten Seite und	Betonka	ntenbru	ch						
k ₃	Faktor in Gleichung (16) CEN/TS 1992-4-4 § 6.2.2.3	[-]	1,0		2,0					
lef	Effektive Verankerungstiefe	[mm]	46	59	67	88	99	125	150	
d _{nom}	Wirksamer Außendurchmesser	[mm]	10	12	15	18	24	28	32	
Verschiebung unter Querlast										
Ungerissener Beton C20/25										
٧	Querlast	[kN]	8,0	14,9	24,0	28,6	55,4	71,4	86,3	
δνο	Kurzzeitverschiebung	[mm]	1,39	1,94	2,71	1,69	2,69	7,84	8,87	
δν _∞	Langzeitverschiebung	[mm]	2,09	2,91	4,07	2,54	4,04	11,76	13,31	

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA	Annex C2
Bemessung nach EOTA TR 055 oder CEN/TS 1992-4-4	
Charakteristische Werte für Querbeanspruchung – BWR 1	

Tabelle C3: Charakteristische Werte für Beständigkeit bei Erdbebenbeanspruchung, Leistungskategorie C1 EOTA TR 045

Wesentliche Merkmale		Leistung							
			M6	M8	M10	M12	M16	M20	M24
Stahlversag	en - Zuglast								
NRk,s,seis C1	Charakteristische Zugtragfähigkeit - Stahlversagen	[kN]	16	29	46	67	126	203	293
γMsN,seis ²⁾	Teilsicherheitsbeiwert	[-]	1,5						
Herausziehen $N_{Rk,p,seis} = \psi_C \times N^0_{Rk,p,seis}$									
NRk,p,seis C1	Charakteristische Tragfähigkeit im Beton C20/25	[kN]	6,8	12	16	25	35,51)	50,2 ¹	66,11)
γMp,seis ²⁾	Teilsicherheitsbeiwert	[-]	1,5						
Stahlversagen - Querlast									
V _{Rk,s,seisC1}	Charakteristische Tragfähigkeit im Beton C20/25	[kN]	9,8	13	20	20	48,5	87,5	105,7
γMsV,seis ²⁾	Teilsicherheitsbeiwert	[-]				1,2	5		

¹⁾ Herauziehen ist nicht maßgebend

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA	Annex C3
Bemessung nach TR 045	
Charakteristische Beständigkeit bei Erdbebenbeanspruchung – BWR 1	

²⁾ Die empfohlenen Teilsicherheitsbeiwerte bei Erdbebenbeanspruchung ($\gamma_{M,seis}$) sind die gleichen wie bei statischer Belastung

Tabelle C4: Charakteristische Werte für Beständigkeit bei Erdbebenbeanspruchung, Leistungskategorie C2 EOTA TR 045

Wesentliche Merkmale		Leistung							
		M6	M8	M10	M12	M16	M20	M24	
Stahlversage	en - Zuglast								
N _{Rk,s,seis} C2 ²⁾	Charakteristische Zugtragfähigkeit - Stahlversagen	[kN]	16	29	46	67	126	203	293
γ _{MsN³⁾}	Teilsicherheitsbeiwert	[-]	1,5						
Herausziehe	n $N_{Rk,p,seis} = \psi_C \times N_{Rk,seis}$								
N _{Rk,p,seis} C2 ²⁾	Charakteristische Tragfähigkeit im Beton C20/25	[kN]	-	3,9	7,8	15,3	28,8	32,8	41,3
γ _{MpN³⁾}	Teilsicherheitsbeiwert	[-]	1,5						
$\delta_{N,sei(DSL)^{1)2)}$	Verschiebung bei DLS	[mm]	-	2,7	4,9	3,6	3,1	7,0	7,0
$\delta_{N,sei(USL)^{1)2)}$	Verschiebung bei ULS	[mm]	-	12,8	15,2	14,0	11,5	18,4	16,2
Stahlversage	en - Querlast								
V _{Rk,s,seis C2²⁾}	Charakteristische Tragfähigkeit im Beton C20/25	[kN]	-	10,2	17,0	17,0	43,9	72,9	74,6
γ _{MsV³⁾}	Teilsicherheitsbeiwert	[-]	1,25						
δ V,sei(DSL) $^{1)2)}$	Verschiebung bei DLS	[mm]	-	3,5	2,7	2,5	2,7	7,0	7,0
δ v,sei(USL) $^{1)2)}$	Verschiebung bei ULS	[mm]	-	6,8	6,3	5,8	6,1	20,9	18,6

¹⁾ Die aufgeführten Verschiebungen stehen für Mittelwerte

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA	Annex C4
Bemessung nach TR 045	
Charakteristische Beständigkeit bei Erdbebenbeanspruchung – BWR 1	

²⁾ Bei verschiebungsempfindlichen oder starren Befestigungen kann bei der Bemessung eine geringere Verschiebung erforderlich sein. Der charakteristische Widerstand bei geringerer Verschiebung kann durch lineare Interpolation oder proportionale Reduktion ermittelt werden.

³⁾ Die empfohlene Teilsicherheitsbeiwerte bei Erdbebenbeanspruchung (γ_{M.seis}) sind die gleichen wie bei statischer Belastung

Tabelle C5: Charakteristische Werte unter Brandbeanspruchung (Bemessung nach EOTA TR 020 oder CEN/TS 1992-4-4)

Wesentliche Merkmale Stahlversagen - Zuglast N _{Rk,s,fi,50} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,s,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,s,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN Herausziehen NRk,p,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,p,fi,30} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,p,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,p,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN Betonversagen N _{Rk,c,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,c,fi,50} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,c,fi,60} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,c,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN N _{Rk,c,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN S _{cr,N} Charakteristischer Achsabstand [mn C _{min} Mindestrandabstand [mn C _{min} Mindestrandabstand [mn C _{min} M	N]	0,20 0,18 0,14 0,10 2,25 2,25 2,25 1,80 3,03 3,03 3,03 2,42	0,37 0,33 0,26 0,18 3,00 3,00 2,40 4,81 4,81 4,81 3,85	0,87 0,75 0,58 0,46 4,00 4,00 4,00 3,20 6,61 6,61 6,61 5,29	1,69 1,26 1,10 0,84 6,25 6,25 5,00 13,08 13,08 13,08 10,46 4 x hef	8,88 8,88 8,88 7,10 17,55 17,55 14,04	4,90 3,68 3,19 2,45 12,58 12,58 10,06 31,44 31,44 25,16	7,06 5,30 4,59 3,53 16,54 16,54 16,54 13,23 49,61 49,61 49,61 39,68		
N _{Rk,s,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,s,fi,60} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,s,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,s,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN Herausziehen N _{Rk,p,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,p,fi,50} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,p,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN Betonversagen N _{Rk,c,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,c,fi,90} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,c,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,c,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN S _{cr,N} Charakteristischer Achsabstand [mn C _{cr,N} Charakteristischer Randabstand [mn C _{min} Mindestrandabstand [mn C _{min} Mindestrandabstand [mn C _{min} Mindestrandabstand [mn C _{min} Feuerwiderstandsdauer = 30 Minuten [k	N]	0,18 0,14 0,10 2,25 2,25 2,25 1,80 3,03 3,03 3,03 2,42	3,00 3,00 3,00 2,40 4,81 4,81	0,75 0,58 0,46 4,00 4,00 4,00 3,20 6,61 6,61 6,61	1,26 1,10 0,84 6,25 6,25 6,25 5,00 13,08 13,08 13,08 10,46 4 x hef	2,36 2,04 1,57 8,88 8,88 8,88 7,10 17,55 17,55	3,68 3,19 2,45 12,58 12,58 12,58 10,06 31,44 31,44 31,44	5,30 4,59 3,53 16,54 16,54 16,54 13,23 49,61 49,61 49,61		
N _{Rk,s,fi,50} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,s,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,s,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN Herausziehen N _{Rk,p,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,p,fi,30} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,p,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,p,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN N _{Rk,c,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,c,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,c,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN N _{Rk,c,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN S _{cr,N} Charakteristischer Achsabstand [mn C _{cr,N} Charakteristischer Randabstand [mn S _{min} Mindestrandabstand [mn C _{min} Mindestrandabstand [mn C _{min} Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm V _{Rk,s,fi,30} Feuerwiderstandsdauer = 3	N]	0,18 0,14 0,10 2,25 2,25 2,25 1,80 3,03 3,03 3,03 2,42	3,00 3,00 3,00 2,40 4,81 4,81	0,75 0,58 0,46 4,00 4,00 4,00 3,20 6,61 6,61 6,61	1,26 1,10 0,84 6,25 6,25 6,25 5,00 13,08 13,08 13,08 10,46 4 x hef	2,36 2,04 1,57 8,88 8,88 8,88 7,10 17,55 17,55	3,68 3,19 2,45 12,58 12,58 12,58 10,06 31,44 31,44 31,44	5,30 4,59 3,53 16,54 16,54 16,54 13,23 49,61 49,61 49,61		
N _{Rk,s,fi,30} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,s,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN Herausziehen N _{Rk,p,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,p,fi,50} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,p,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,p,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN Betonversagen N _{Rk,c,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN N _{Rk,c,fi,90} Feuerwiderstandsdauer = 60 Minuten [kN N _{Rk,c,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN N _{Rk,c,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN S _{cr,N} Charakteristischer Achsabstand [mn C _{cr,N} Charakteristischer Randabstand [mn C _{min} Mindestachsabstand [mn C _{min} Mindestrandabstand [mn C _{min} Mindestrandabstand [mn C _{min} Mindestrandabstand [mn C _{min} Minuten [kN C _{k,s,fi,3}	N]	2,25 2,25 2,25 1,80 3,03 3,03 3,03 2,42	3,00 3,00 3,00 2,40 4,81 4,81	0,58 0,46 4,00 4,00 4,00 3,20 6,61 6,61 6,61	1,10 0,84 6,25 6,25 6,25 5,00 13,08 13,08 13,08 10,46 4 x hef	2,04 1,57 8,88 8,88 8,88 7,10 17,55 17,55	3,19 2,45 12,58 12,58 12,58 10,06 31,44 31,44 31,44	4,59 3,53 16,54 16,54 16,54 13,23 49,61 49,61 49,61		
NRk,s,fi,120 Feuerwiderstandsdauer = 120 Minuten [k] Herausziehen Rk,p,fi,30 Feuerwiderstandsdauer = 30 Minuten [k] NRk,p,fi,60 Feuerwiderstandsdauer = 60 Minuten [k] NRk,p,fi,90 Feuerwiderstandsdauer = 90 Minuten [k] NRk,p,fi,120 Feuerwiderstandsdauer = 120 Minuten [k] Betonversagen NRk,c,fi,30 Feuerwiderstandsdauer = 30 Minuten [k] NRk,c,fi,60 Feuerwiderstandsdauer = 60 Minuten [k] NRk,c,fi,90 Feuerwiderstandsdauer = 90 Minuten [k] NRk,c,fi,120 Feuerwiderstandsdauer = 120 Minuten [k] Scr,N Charakteristischer Achsabstand [mn Ccr,N Charakteristischer Randabstand [mn Smin Mindestachsabstand [mn Cmin Mindestrandabstand [mn YM,fi Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm VRk,s,fi,60 Feuerwiderstandsdauer = 60 Minuten [k] VRk,s,fi,60 Feuerwiderstandsdauer = 60 Minuten [k]	N]	2,25 2,25 2,25 1,80 3,03 3,03 3,03 2,42	3,00 3,00 3,00 2,40 4,81 4,81 4,81	0,46 4,00 4,00 4,00 3,20 6,61 6,61 6,61	0,84 6,25 6,25 6,25 5,00 13,08 13,08 13,08 10,46 4 x h _{ef}	1,57 8,88 8,88 8,88 7,10 17,55 17,55 17,55	2,45 12,58 12,58 12,58 10,06 31,44 31,44 31,44	3,53 16,54 16,54 16,54 13,23 49,61 49,61 49,61		
Herausziehen NRk,p,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN NRk,p,fi,60 Feuerwiderstandsdauer = 60 Minuten [kN NRk,p,fi,90 Feuerwiderstandsdauer = 90 Minuten [kN NRk,p,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN Betonversagen NRk,c,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN NRk,c,fi,60 Feuerwiderstandsdauer = 60 Minuten [kN NRk,c,fi,90 Feuerwiderstandsdauer = 90 Minuten [kN NRk,c,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN Scr,N Charakteristischer Achsabstand [mn Ccr,N Charakteristischer Randabstand [mn Smin Mindestachsabstand [mn Cmin Mindestrandabstand [mn YM,fi Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm VRk,s,fi,60 Feuerwiderstandsdauer = 30 Minuten [kN VRk,s,fi,60 Feuerwiderstandsdauer = 60 Minuten [kN	N]	2,25 2,25 2,25 1,80 3,03 3,03 3,03 2,42	3,00 3,00 3,00 2,40 4,81 4,81 4,81	4,00 4,00 4,00 3,20 6,61 6,61 6,61	6,25 6,25 6,25 5,00 13,08 13,08 13,08 10,46 4 x h _{ef}	8,88 8,88 8,88 7,10 17,55 17,55 17,55	12,58 12,58 12,58 10,06 31,44 31,44 31,44	16,54 16,54 16,54 13,23 49,61 49,61		
NRk,p,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN NRk,p,fi,60 Feuerwiderstandsdauer = 60 Minuten [kN NRk,p,fi,90 Feuerwiderstandsdauer = 90 Minuten [kN NRk,p,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN Betonversagen NRk,c,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN NRk,c,fi,50 Feuerwiderstandsdauer = 60 Minuten [kN NRk,c,fi,90 Feuerwiderstandsdauer = 90 Minuten [kN NRk,c,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN Scr,N Charakteristischer Achsabstand [mn Ccr,N Charakteristischer Randabstand [mn Smin Mindestrandabstand [mn Vm,fi Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm VRk,s,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN V _{Rk,s,fi,60} Feuerwiderstandsdauer = 60 Minuten [kN	N]	2,25 2,25 1,80 3,03 3,03 3,03 2,42	3,00 3,00 2,40 4,81 4,81 4,81	4,00 4,00 3,20 6,61 6,61 6,61	6,25 6,25 5,00 13,08 13,08 13,08 10,46 4 x h _{ef}	8,88 8,88 7,10 17,55 17,55 17,55	12,58 12,58 10,06 31,44 31,44 31,44	16,54 16,54 13,23 49,61 49,61 49,61		
NRk,p,fi,50 Feuerwiderstandsdauer = 60 Minuten [kN NRk,p,fi,90 Feuerwiderstandsdauer = 90 Minuten [kN NRk,p,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN Betonversagen NRk,c,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN NRk,c,fi,60 Feuerwiderstandsdauer = 60 Minuten [kN NRk,c,fi,90 Feuerwiderstandsdauer = 90 Minuten [kN NRk,c,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN Scr,N Charakteristischer Achsabstand [mn Ccr,N Charakteristischer Randabstand [mn Smin Mindestrandabstand [mn Cmin Mindestrandabstand [mn YM,fi Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm VRk,s,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN V _{Rk,s} ,fi,60 Feuerwiderstandsdauer = 60 Minuten [kN	N]	2,25 2,25 1,80 3,03 3,03 3,03 2,42	3,00 3,00 2,40 4,81 4,81 4,81	4,00 4,00 3,20 6,61 6,61 6,61	6,25 6,25 5,00 13,08 13,08 13,08 10,46 4 x h _{ef}	8,88 8,88 7,10 17,55 17,55 17,55	12,58 12,58 10,06 31,44 31,44 31,44	16,54 16,54 13,23 49,61 49,61 49,61		
NRk,p,fi,30 Feuerwiderstandsdauer = 90 Minuten [kN] NRk,p,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN] Betonversagen NRk,c,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN] NRk,c,fi,60 Feuerwiderstandsdauer = 60 Minuten [kN] NRk,c,fi,90 Feuerwiderstandsdauer = 90 Minuten [kN] NRk,c,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN] Scr,N Charakteristischer Achsabstand [mn] Ccr,N Charakteristischer Randabstand [mn] Smin Mindestachsabstand [mn] Cmin Mindestrandabstand [mn] YM,fi Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm V _{Rk,s,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN] V _{Rk,s,fi,60} Feuerwiderstandsdauer = 60 Minuten [kN]	N]	2,25 1,80 3,03 3,03 3,03 2,42	3,00 2,40 4,81 4,81 4,81	4,00 3,20 6,61 6,61 6,61	6,25 5,00 13,08 13,08 13,08 10,46 4 x h _{ef}	8,88 7,10 17,55 17,55 17,55	12,58 10,06 31,44 31,44 31,44	16,54 13,23 49,61 49,61 49,61		
NRk,p,fi,120 Feuerwiderstandsdauer = 120 Minuten [k] Betonversagen Rk,c,fi,30 Feuerwiderstandsdauer = 30 Minuten [k] NRk,c,fi,60 Feuerwiderstandsdauer = 60 Minuten [k] NRk,c,fi,90 Feuerwiderstandsdauer = 90 Minuten [k] NRk,c,fi,120 Feuerwiderstandsdauer = 120 Minuten [k] Scr,N Charakteristischer Achsabstand [mn Ccr,N Charakteristischer Randabstand [mn Smin Mindestachsabstand [mn γM,fi Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm VRk,s,fi,30 Feuerwiderstandsdauer = 30 Minuten [k] V _{Rk,s,fi,60} Feuerwiderstandsdauer = 60 Minuten [k]	N]	3,03 3,03 3,03 2,42	2,40 4,81 4,81 4,81	3,20 6,61 6,61 6,61	5,00 13,08 13,08 13,08 10,46 4 x h _{ef}	7,10 17,55 17,55 17,55	31,44 31,44 31,44	13,23 49,61 49,61 49,61		
Betonversagen NRk,c,fi,30 Feuerwiderstandsdauer = 30 Minuten [kN NRk,c,fi,60 Feuerwiderstandsdauer = 60 Minuten [kN NRk,c,fi,90 Feuerwiderstandsdauer = 90 Minuten [kN NRk,c,fi,120 Feuerwiderstandsdauer = 120 Minuten [kN Scr,N Charakteristischer Achsabstand [mn Ccr,N Charakteristischer Randabstand [mn Smin Mindestachsabstand [mn Vm,fi Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm V _{Rk,s,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN V _{Rk,s,fi,60} Feuerwiderstandsdauer = 60 Minuten [kN	N]	3,03 3,03 3,03 2,42	4,81 4,81 4,81	6,61 6,61 6,61	13,08 13,08 13,08 10,46 4 x h _{ef}	17,55 17,55 17,55	31,44 31,44 31,44	49,61 49,61 49,61		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N] N] N] n] m]	3,03 3,03 2,42	4,81 4,81	6,61 6,61	13,08 13,08 10,46 4 x h _{ef}	17,55 17,55	31,44 31,44	49,61 49,61		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N] N] N] n] m]	3,03 3,03 2,42	4,81 4,81	6,61 6,61	13,08 13,08 10,46 4 x h _{ef}	17,55 17,55	31,44 31,44	49,61 49,61		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N] N] n] n] n]	3,03 2,42	4,81	6,61	13,08 10,46 4 x h _{ef}	17,55	31,44	49,61		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	n] n] n] n]	2,42			10,46 4 x h _{ef}					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m] m] m]		3,85	5,29	4 x h _{ef}	14,04	25,16	39,68		
C _{cr,N} Charakteristischer Randabstand [mn s _{min} Mindestachsabstand [mn c _{min} Mindestrandabstand [mn γ _{M,fi} Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm V _{Rk,s,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN V _{Rk,s,fi,60} Feuerwiderstandsdauer = 60 Minuten [kN	m] m]	50								
$ \begin{array}{cccc} \textbf{S}_{\text{min}} & \text{Mindestachsabstand} & [\text{min}] \\ \textbf{C}_{\text{min}} & \text{Mindestrandabstand} & [\text{min}] \\ \textbf{\gamma}_{\text{M,fi}} & \text{Teilsicherheitsbeiwert} & [\text{-}] \\ \textbf{Stahlversagen ohne Hebelarm} \\ \textbf{V}_{\text{Rk,s,fi,30}} & \text{Feuerwiderstandsdauer} = 30 \text{Minuten} & [\text{kN}] \\ \textbf{V}_{\text{Rk,s,fi,60}} & \text{Feuerwiderstandsdauer} = 60 \text{Minuten} & [\text{kN}] \\ \textbf{Minuten} $	m]	50			•					
$ \begin{array}{c} \textbf{C}_{min} & \text{Mindestrandabstand} & [mn] \\ \textbf{yM}, fi & \text{Teilsicherheitsbeiwert} & [-] \\ \textbf{Stahlversagen ohne Hebelarm} \\ \textbf{V}_{Rk,s,fi,30} & \text{Feuerwiderstandsdauer} = 30 \text{ Minuten} & [kN] \\ \textbf{V}_{Rk,s,fi,60} & \text{Feuerwiderstandsdauer} = 60 \text{ Minuten} & [kN] \\ \textbf{V}_{Rk,s,fi,60} & \text{Feuerwiderstandsdauer} = 60 \text{ Minuten} & [kN] \\ \end{array} $		50			2 x h _{ef}					
γ _{M,fi} Teilsicherheitsbeiwert [-] Stahlversagen ohne Hebelarm V _{Rk,s,fi,30} Feuerwiderstandsdauer = 30 Minuten [kN] V _{Rk,s,fi,60} Feuerwiderstandsdauer = 60 Minuten	,		60	70	80	100	125	150		
Stahlversagen ohne HebelarmVRk,s,fi,30Feuerwiderstandsdauer = 30 Minuten[kNVRk,s,fi,60Feuerwiderstandsdauer = 60 Minuten[kN	n]	$c_{min} = 2 h_{ef}$, $c_{min} \ge 300$ mm und $\ge 2 h_{ef}$ bei Brandbeanspruchung von mehr als einer Seite								
$V_{Rk,s,fi,30}$ Feuerwiderstandsdauer = 30 Minuten [kN $V_{Rk,s,fi,60}$ Feuerwiderstandsdauer = 60 Minuten [kN]	1,01)								
V _{Rk,s,fi,60} Feuerwiderstandsdauer = 60 Minuten [kN										
$V_{Rk,s,fi,60}$ Feuerwiderstandsdauer = 60 Minuten [kN	۷] [0,20	0,37	0,87	1,69	3,14	4,9	7,06		
	۱]	0,18	0,33	0,75	1,26	2,36	3,68	5,30		
V _{Rk,s,fi,90} Feuerwiderstandsdauer = 90 Minuten [kN	۱]	0,14	0,26	0,58	1,10	2,04	3,19	4,59		
V _{Rk,s,fi,120} Feuerwiderstandsdauer = 120 Minuten [kN	۱]	0,10	0,18	0,46	0,84	1,57	2,45	3,53		
Stahlversagen mit Hebelarm										
M ⁰ Rk,s,fi,30 Feuerwiderstandsdauer = 30 Minuten [Nr	m]	0,15	0,37	1,12	2,62	6,66	13,07	22,45		
M ⁰ Rk,s,fi,60 Feuerwiderstandsdauer = 60 Minuten [Nr	m]	0,14	0,34	0,97	1,96	5,00	9,80	16,84		
M ⁰ Rk,s,fi,90 Feuerwiderstandsdauer = 90 Minuten [Nr	m]	0,11	0,26	0,75	1,70	4,33	8,49	14,59		
M ⁰ Rk,s,fi,120 Feuerwiderstandsdauer = 120 Minuten [Nr	m]	0,08	0,19	0,60	1,31	3,33	5,44	9,35		
Betonausbruch auf der lastabgewandten Seite										
k ₃ Faktor in Gleichung (16) CEN/TS [mn 1992-4-4 § 6.2.2.3	m]	1,0)			2,0				

Betonkantenbruch

Der Ausgangswert $V^0_{Rk,c,fi}$ für die charakteristische Tragfähigkeit in Beton C20/25 bis C50/60 unter Brandbeanspruchung lässt sich wie folgt berechnen:

 $V_{Rk,c,fi}^{0} = 0.25 \times V_{Rk,c}^{0} (\leq R90) \text{ und } V_{Rk,c,fi}^{0} = 0.20 \times V_{Rk,c}^{0} (R120)$

 $\mbox{mit $V^0_{Rk,c}$ charakteristische Tragfähigkeit im gerissenen Beton $C20/25$ bei normaler Temperatur}$

Apolo MEA Schwerlastanker SLA / Apolo MEA Heavy-duty anchor SLA	Annex C5
Bemessung nach EOTA TR 020	
Charakteristische Beständigkeit bei Brandbeanspruchung - BWR 2	

¹⁾ Sofern andere nationale Regelungen fehlen